
Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries

Bing Li,^a Dongsheng Geng,^a Xinjing Shannon Lee,^b Xiaoming Ge,^a Jianwei Chai,^a Zhijuan Wang,^a Jie Zhang,^a Zhaolin Liu,^{*a} T. S. Andy Hor^{*ac} and Yun Zong^{*a}

^aInstitute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore ^bNational Junior College, 37 Hillcrest Road, Singapore 288913, Republic of Singapore ^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore

<u>Abstract</u>

We report 2D microporous carbon sheets with high surface area, derived from eggplant *via* simple carbonization and KOH activation, as low cost yet efficient bifunctional catalysts for high performance rechargeable zinc—air batteries.

<u>Ref</u>: Bing Li, Dongsheng Gen, Xinjing Shannon Lee, Xiaoming Ge, JianWei Chai, Zhiluan Wang, Jie Zhang, Zhaolin Liu, T. S. Andy Hor and Yun Zong, *Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries, Chemical Communications, 51, 8841 (2015)*

<u>URL</u>: http://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc01999k#!divAbstract